Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 153, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478150

RESUMEN

Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin. The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering. An emerging research area in PTM is personal radiative thermal management (PRTM), which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation. However, it is less taken into account in traditional textiles, and there currently lies a gap in our knowledge and understanding of PRTM. In this review, we aim to present a thorough analysis of advanced textile materials and technologies for PRTM. Specifically, we will introduce and discuss the underlying radiation heat transfer mechanisms, fabrication methods of textiles, and various indoor/outdoor applications in light of their different regulation functionalities, including radiative cooling, radiative heating, and dual-mode thermoregulation. Furthermore, we will shine a light on the current hurdles, propose potential strategies, and delve into future technology trends for PRTM with an emphasis on functionalities and applications.

2.
Adv Sci (Weinh) ; : e2309605, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532281

RESUMEN

Thermal protective textiles are crucial for safeguarding individuals, particularly firefighters and steelworkers, against extreme heat, and for preventing burn injuries. However, traditional firefighting gear suffers from statically fixed thermal insulation properties, potentially resulting in overheating and discomfort in moderate conditions, and insufficient protection in extreme fire events. Herein, an innovative soft robotic textile is developed for dynamically adaptive thermal management, providing superior personal protection and thermal comfort across a spectrum of environmental temperatures. This unique textile features a thermoplastic polyurethane (TPU)-sealed actuation system, embedded with a low boiling point fluid for reversible phase transition, resembling an endoskeleton that triggers an expansion within the textile matrix for enhanced air gap and thermal insulation. The thermal resistance improves automatically from 0.23 to 0.48 Km2 W-1 by self-actuating under intense heat, exceeding conventional textiles by maintaining over 10 °C cooler temperatures. Additionally, the knitted substrate incorporated into the soft actuators can substantially mitigate convective heat transfer, as evidenced by the thermal resistance tests and the temperature mapping derived from numerical simulations. Moreover, it boasts significantly increased moisture permeability. The thermoadaptation and breathability of this durable all-fabric system signify considerable progress in the development of protective clothing with high comfort for dynamic and extreme temperature conditions.

3.
J Hazard Mater ; 466: 133668, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309167

RESUMEN

Organic vapors emitted during solvent use are important precursors of secondary organic aerosols (SOAs). Industrial coatings are a major class of solvents that emit volatile and intermediate volatile organic compounds (VOCs and IVOCs, respectively). However, the emission factors and source profiles of VOCs and IVOCs from industrial coatings remain unclear. In this study, representative solvent- and water-based industrial paints were evaporated, sampled and tested using online and offline instruments. The VOC and IVOC emission factors for solvent-based paints are 129-254 and 25-80 g/kg, while for water-based paint are 13 and 32 g/kg, respectively. In solvent-based paints, the VOCs are mainly aromatics, while the IVOCs are composed of long-chain alkanes, alkenes, carbonyls and halocarbons. The VOCs and IVOCs in water-based paint are mostly oxygenates, such as ethanol, acetone, ethylene glycol, and Texanol. During the evaporation of solvent-based paints, the fraction of IVOCs increases along with those of alkenes and aldehydes, while the proportion of aromatics decreases. For water-based paint, the fraction of IVOCs slightly decreases with evaporation. The SOA formation potentials of solvent-based paints are 8.6-28.0 g/kg, much higher than that of water-based paint (0.65 g/kg); thus, substituting solvent-based paints with water-based paints may significantly decrease SOA formation.

4.
Micromachines (Basel) ; 15(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276864

RESUMEN

Capillary-gradient wicks can achieve fast or directional liquid transport, but they face fabrication challenges by traditional methods in terms of precise patterns. Laser processing is a potential solution due to its high pattern accuracy, but there are a few studies on laser-processed capillary-gradient wicks. In this paper, capillary step-gradient micro-grooved wicks (CSMWs) were fabricated by an ultraviolet nanosecond pulsed laser, and their capillary performance was studied experimentally. The CSMWs could be divided into three regions with a decreasing capillary radius. The equilibrium rising height of the CSMWs was enhanced by 124% compared to the non-gradient parallel wick. Different from the classical Lucas-Washburn model describing a uniform non-gradient wick, secondary capillary acceleration was observed in the negative gradient direction of the CSMWs. With the increase in laser power and the decrease in scanning speed, the capillary performance was promoted, and the optimal laser processing parameters were 4 W-10 mm/s. The laser-enhanced capillary performance was attributed to the improved hydrophilicity and reduced capillary radius, which resulted from the increased surface roughness, protrusion morphology, and deep-narrow V-shaped grooves induced by the high energy density of the laser. Our study demonstrates that ultraviolet pulsed laser processing is a highly efficient and low-cost method for fabricating high-performance capillary gradient wicks.

5.
Environ Sci Technol ; 57(43): 16435-16445, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37853753

RESUMEN

Traditional global emission inventories classify primary organic emissions into nonvolatile organic carbon and volatile organic compounds (VOCs), excluding intermediate-volatility and semivolatile organic compounds (IVOCs and SVOCs, respectively), which are important precursors of secondary organic aerosols. This study establishes the first global anthropogenic full-volatility organic emission inventory with chemically speciated or volatility-binned emission factors. The emissions of extremely low/low-volatility organic compounds (xLVOCs), SVOCs, IVOCs, and VOCs in 2015 were 13.2, 10.1, 23.3, and 120.5 Mt, respectively. The full-volatility framework fills a gap of 18.5 Mt I/S/xLVOCs compared with the traditional framework. Volatile chemical products (VCPs), domestic combustion, and on-road transportation sources were dominant contributors to full-volatility emissions, accounting for 30, 30, and 12%, respectively. The VCP and on-road transportation sectors were the main contributors to IVOCs and VOCs. The key emitting regions included Africa, India, Southeast Asia, China, Europe, and the United States, among which China, Europe, and the United States emitted higher proportions of IVOCs and VOCs owing to the use of cleaner fuel in domestic combustion and more intense emissions from VCPs and on-road transportation activities. The findings contribute to a better understanding of the impact of organic emissions on global air pollution and climate change.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , China , Aerosoles/análisis , Monitoreo del Ambiente
6.
Environ Sci Technol ; 57(14): 5957-5966, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36994990

RESUMEN

Organic aerosol (OA) is a key component of fine particulate matter (PM2.5) and affects the human health and leads to climate change. With strict control measures for air pollutants during the last decade, the OA concentration in China declined slowly, while its sources remain unclear. In this study, we simulate the primary OA (POA) and secondary OA (SOA) concentrations from 2005 to 2019 with a state-of-the-art air quality model, Community Multiscale Air Quality (CMAQ, version 5.3.2) coupled with a Two-Dimensional Volatility Basis Set (2D-VBS) module, and a long-term emission inventory of full-volatility organic compounds in China and conduct source apportionment and sensitivity analysis. The simulation results show that, from 2005 to 2019, the OA concentration in China decreased from 24.0 to 12.8 µg/m3 with most of the reduction from POA. The OA pollution from residential biomass burning declined 75% from 2005 to 2019, while it is still the major OA source in China. OA pollution from VCP increased by more than 2-fold and became the largest SOA source in China. From 2014 to 2019, the NOx control in China slightly offset the decrease of SOA concentration due to elevated oxidation capacity.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China , Aerosoles/análisis
7.
Comput Intell Neurosci ; 2023: 2024237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660560

RESUMEN

Automatic recognition and positioning of electronic components on PCBs can enhance quality inspection efficiency for electronic products during manufacturing. Efficient PCB inspection requires identification and classification of PCB components as well as defects for better quality assurance. The small size of the electronic component and PCB defect targets means that there are fewer feature areas for the neural network to detect, and the complex grain backgrounds of both datasets can cause significant interference, making the target detection task challenging. Meanwhile, the detection performance of deep learning models is significantly impacted due to the lack of samples. In this paper, we propose conditional TransGAN (cTransGAN), a generative model for data augmentation, which enhances the quantity and diversity of the original training set and further improves the accuracy of PCB electronic component recognition. The design of cTransGAN brings together the merits of both conditional GAN and TransGAN, allowing a trained model to generate high-quality synthetic images conditioned on the class embeddings. To validate the proposed method, we conduct extensive experiments on two datasets, including a self-developed dataset for PCB component detection and an existing dataset for PCB defect detection. Also, we have evaluated three existing object detection algorithms, including Faster R-CNN ResNet101, YOLO V3 DarkNet-53, and SCNet ResNet101, and each is validated under four experimental settings to form an ablation study. Results demonstrate that the proposed cTransGAN can effectively enhance the quality and diversity of the training set, leading to superior performance on both tasks. We have open-sourced the project to facilitate further studies.


Asunto(s)
Bifenilos Policlorados , Algoritmos , Comercio , Electrónica , Redes Neurales de la Computación
8.
Sci Total Environ ; 868: 161635, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36657674

RESUMEN

Secondary organic aerosol (SOA) composes a substantial fraction of atmospheric particles, yet the formation and aging mechanism of SOA remains unclear. Here we investigate the initial oxidation of primary organic aerosol (POA) and further aging of SOA in winter Beijing by using aerosol mass spectrometer (AMS) measurements along with offline molecular tracer analysis. Multilinear engine (ME-2) source apportionment was conducted to capture the characteristic of source-related SOA, and connect them with specific POA. Our results show that urban cooking and fossil fuel burning sources contribute significantly (17 % and 20 %) to total organic aerosol (OA) in winter Beijing. Molecular tracer analysis by two-dimensional gas chromatography-time-of-flight mass spectrometer (GC × GC-ToF-MS) reveals that cooking SOA (CSOA) is produced through both photooxidation and aqueous-phase processing, while less oxidized SOA (LO-SOA) is the photooxidation product of fossil fuel burning OA (FFOA) and may experience aqueous-phase aging to form more-oxidized oxygenated OA (MO-OOA). Furthermore, CHOm/z 69 and CHOm/z 85 are mass spectral tracers indicating the initial photooxidation, while CHO2+ and C2H2O2+ imply further aqueous-phase aging of OA. Tracer analysis indicates that the formation of diketones is involved in the initial photooxidation of POA, while the formation of glyoxal and diacids is involved in the further aqueous-phase aging of SOA.

9.
Sci Total Environ ; 842: 156940, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753472

RESUMEN

Household combustion of biomass straw for cooking or heating is one of the most important emission sources of intermediate volatility and semi-volatile organic compounds (I/SVOCs). However, there are limited studies on the emission factors (EFs) and speciation profiles of I/SVOCs from household stoves burning biomass straw. In this study, experiments were conducted in a typical Chinese stove to test the EFs and species of I/SVOCs in three commonly used straws. It was revealed that EFs of I/SVOCs emitted from the burning of corn straw, rice straw, and wheat straw were 6.7, 1.9, and 9.8 g/kg, respectively, which accounted for 48.3 %, 36.8 %, and 48.6 % of total organic compounds emitted. Particulate organic compounds were dominated by ketones, oxygenated aromatics, acids, esters, and nitrogen-containing compounds, whereas the gaseous phase was dominated by aldehydes, acids, and aromatics. Although I/SVOCs only accounted for 18.1-23.6 % of the gaseous emissions from burning of straw, they represented 64.8-72.9 % of the secondary organic aerosol formation potential (SOAFP). The EFs of 16 priority polycyclic aromatic hydrocarbons (PAHs) were 362.0, 262.5, and 1145.2 mg/kg for corn straw, rice straw, and wheat straw, respectively, among which 3-ring and 4-ring PAHs were the main components. Thus, the results of this study provide new reliable I/SVOCs data that are useful for the development of an accurate emission inventory of organic compounds, simulation of secondary organic aerosol (SOA) formation, and health risk assessment.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , China , Gases , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Compuestos Orgánicos Volátiles/análisis
10.
Environ Pollut ; 305: 119284, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436508

RESUMEN

Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are key precursors of secondary organic aerosol (SOA). However, the comprehensive characterization of I/SVOCs has long been an analytical challenge. Here, we develop a novel method of speciating and quantifying I/SVOCs using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) by constructing class-screening programs based on their characteristic fragments and mass spectrum patterns. Using this new approach, we then present a comprehensive analysis of gaseous I/SVOC emissions from heavy-duty diesel vehicles (HDDVs). Over three-thousand compounds are identified and classified into twenty-one categories. The dominant compound groups of I/SVCOs emitted by HDDVs are alkanes (including normal and branched alkanes, 37-66%), benzylic alcohols (7-20%), alkenes (3-11%), cycloalkanes (3-9%), and benzylic ketones (1-4%). Oxygenated I/SVOCs (O-I/SVOCs, e.g., benzylic alcohols and ketones) are first quantified and account for >20% of the total I/SVOC mass. Advanced aftertreatment devices largely reduce the total I/SVOC emissions but increase the proportion of O-I/SVOCs. With the speciation data, we successfully map the I/SVOCs into the two-dimensional volatility basis set space, which facilitates a better estimation of SOA. As aging time goes by, approximate 45% difference between the two scenarios after seven-day aging is observed, which confirms the significant impact of speciated I/SVOC emission data on SOA prediction.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Alcoholes/análisis , Alcanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Cetonas , Espectrometría de Masas , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
11.
Sci Total Environ ; 833: 155127, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35421477

RESUMEN

Comprehensive characterization of diesel vehicle emitted polycyclic aromatic hydrocarbon (PAH) emissions is yet to achieve due to the limitation of analytical methods. Therefore, we herein developed a two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) method and quantified the total PAHs from diesel vehicles based on their characteristic fragments and mass spectral patterns. Overall, the emission factors (EFs) of total PAHs (gas + particle) are observed to range from 4.1 ± 2.5 mg km-1 to 51.4 ± 22.2 mg km-1 under cold-start and hot-start conditions for one China IV and two China VI heavy-duty diesel vehicles (HDDVs), of which the un-speciated PAHs account for more than 97%. Gaseous PAHs (g-PAHs) are dominated by three-ring PAHs, whereas particulate PAHs (p-PAHs) are dominated by two-ring PAHs. The total PAHs partition significantly into the gas phase for whole fleets and cycles, except that five-ring PAHs partition almost completely into the particle phase. The aftertreatment technologies (e.g., diesel particulate filter, DPF) significantly reduce the total PAH emissions by 49.8 ± 33.2%. The minimum toxic equivalency factors (TEFs) are deployed to estimate the toxicity of the total PAHs. Much higher toxicity is obtained than those in previous studies, indicating that the PAH toxicity of diesel vehicle emissions might be largely underestimated.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Cromatografía de Gases y Espectrometría de Masas , Gases/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
12.
Build Environ ; 205: 108236, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34393325

RESUMEN

A mask that creates a physical barrier to protect the wearer from breathing in airborne bacteria or viruses, reducing the risk of infection in polluted air and potentially contaminated environments, has become a daily necessity for the public especially as COVID-19 has exploded around the world. However, the use of masks often causes soaring temperatures and thick humid air, leading to thermal and wear discomfort and breathing difficulties for a number of people, and further increasing the elevated risk of heat illnesses including heat stroke and heat exhaustion. When wearers become highly active or work under high tension, the excess sweat generated negatively affects the functionality of masks. Here, we report on an innovative design of an air-conditioned mask (AC Mask) system, facilitating thermoregulation in the mask microclimate, ease of breathing, and wear comfort. The AC Mask system is developed by integrating a cost-effective and lightweight thermoelectric (TE) and ventilation unit in a wearable 3D printed mask device, compatible with existing disposable masks, to protect end users safely against toxic particles such as viruses. A wind-guided tunnel has been developed for quick and efficient ventilation of cooling air. Based on a human trial, reductions in the apparent microclimate temperature and the humidity by 3.5 °C and 50%, respectively, have been achieved under a low voltage. With the excellent thermal management properties, the AC Mask will find also wide application among professional end-users such as construction workers, firefighters, and medical personnel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...